ChatGPT has shown its great power in text processing, including its reasoning ability from text reading. However, there has not been any direct comparison between human readers and ChatGPT in reasoning ability related to text reading. This study was undertaken to investigate how ChatGPTs (i.e., ChatGPT and ChatGPT Plus) and Chinese senior school students as ESL learners exhibited their reasoning ability from English narrative texts. Additionally, we compared the two ChatGPTs in the reasoning performances when commands were updated elaborately. The whole study was composed of three reasoning tests: Test 1 for commonsense inference, Test 2 for emotional inference, and Test 3 for causal inference. The results showed that in Test 1, the students outdid the two ChatGPT versions in local-culture-related inferences but performed worse than the chatbots in daily-life inferences. In Test 2, ChatGPT Plus excelled whereas ChatGPT lagged behind in accuracy. In association with both accuracy and frequency of correct responses, the students were inferior to the two chatbots. Compared with ChatGPTs' better performance in positive emotions, the students showed their superiority in inferring negative emotions. In Test 3, the students demonstrated better logical analysis, outdoing both chatbots. In updating command condition, ChatGPT Plus displayed good causal reasoning ability while ChatGPT kept unchanged. Our study reveals that human readers and ChatGPTs have their respective advantages and disadvantages in drawing inferences from text reading comprehension, unlocking a complementary relationship in text-based reasoning.