Quora is a popular Q&A site which provides users with the ability to tag questions with multiple relevant topics which helps to attract quality answers. These topics are not predefined but user-defined conventions and it is not so rare to have multiple such conventions present in the Quora ecosystem describing exactly the same concept. In almost all such cases, users (or Quora moderators) manually merge the topic pair into one of the either topics, thus selecting one of the competing conventions. An important application for the site therefore is to identify such competing conventions early enough that should merge in future. In this paper, we propose a two-step approach that uniquely combines the anomaly detection and the supervised classification frameworks to predict whether two topics from among millions of topic pairs are indeed competing conventions, and should merge, achieving an F-score of 0.711. We also develop a model to predict the direction of the topic merge, i.e., the winning convention, achieving an F-score of 0.898. Our system is also able to predict ~ 25% of the correct case of merges within the first month of the merge and ~ 40% of the cases within a year. This is an encouraging result since Quora users on average take 936 days to identify such a correct merge. Human judgment experiments show that our system is able to predict almost all the correct cases that humans can predict plus 37.24% correct cases which the humans are not able to identify at all.