It is an ongoing debate whether and how comma selection in evolutionary algorithms helps to escape local optima. We propose a new benchmark function to investigate the benefits of comma selection: OneMax with randomly planted local optima, generated by frozen noise. We show that comma selection (the $(1,\lambda)$ EA) is faster than plus selection (the $(1+\lambda)$ EA) on this benchmark, in a fixed-target scenario, and for offspring population sizes $\lambda$ for which both algorithms behave differently. For certain parameters, the $(1,\lambda)$ EA finds the target in $\Theta(n \ln n)$ evaluations, with high probability (w.h.p.), while the $(1+\lambda)$ EA) w.h.p. requires almost $\Theta((n\ln n)^2)$ evaluations. We further show that the advantage of comma selection is not arbitrarily large: w.h.p. comma selection outperforms plus selection at most by a factor of $O(n \ln n)$ for most reasonable parameter choices. We develop novel methods for analysing frozen noise and give powerful and general fixed-target results with tail bounds that are of independent interest.