In anytime-valid sequential inference, it is known that any admissible inference procedure must be based on test martingales and their composite generalization, called e-processes, which are nonnegative processes whose expectation at any arbitrary stopping time is upper-bounded by one. An e-process quantifies the accumulated evidence against a composite null hypothesis over a sequence of outcomes. This paper studies methods for combining e-processes that are computed using different information sets, i.e., filtrations, for a null hypothesis. Even though e-processes constructed on the same filtration can be combined effortlessly (e.g., by averaging), e-processes constructed on different filtrations cannot be combined as easily because their validity in a coarser filtration does not translate to validity in a finer filtration. We discuss three concrete examples of such e-processes in the literature: exchangeability tests, independence tests, and tests for evaluating and comparing forecasts with lags. Our main result establishes that these e-processes can be lifted into any finer filtration using adjusters, which are functions that allow betting on the running maximum of the accumulated wealth (thereby insuring against the loss of evidence). We also develop randomized adjusters that can improve the power of the resulting sequential inference procedure.