Hybrid and mixed strategy EAs have become rather popular for tackling various complex and NP-hard optimization problems. While empirical evidence suggests that such algorithms are successful in practice, rather little theoretical support for their success is available, not mentioning a solid mathematical foundation that would provide guidance towards an efficient design of this type of EAs. In the current paper we develop a rigorous mathematical framework that suggests such designs based on generalized schema theory, fitness levels and drift analysis. An example-application for tackling one of the classical NP-hard problems, the "single-machine scheduling problem" is presented.