https://github.com/xauat-liushipeng/CLIC}{code}
As an essential visual attribute, image complexity affects human image comprehension and directly influences the performance of computer vision tasks. However, accurately assessing and quantifying image complexity faces significant challenges. Previous works needed more generalization capabilities and well-labeled datasets to learn image complexity features. However, creating such datasets requires expensive manual labeling costs, and the models inevitably learn about human subjective biases. To address the above problems, we propose CLIC, an unsupervised framework based on contrastive learning, for learning image complexity representations. The method learns image complexity features on unlabeled data, avoiding the high labeling cost. Specifically, we propose a unique positive and negative sample selection strategy to reinforce the differences in complexity features. At the same time, we introduce an image prior-based Complexity-Aware Loss to constrain the learning process of the model. We conducted extensive experiments for verification, and the results show that CLIC can effectively learn the image complexity representation. CLIC obtained competitive results with supervised methods by fine-tuning on IC9600. In addition, CLIC applied to downstream tasks shows significant performance improvements, demonstrating the potential for application in various real-world scenarios. \href{