Unsupervised Domain Adaptation (UDA) endeavors to bridge the gap between a model trained on a labeled source domain and its deployment in an unlabeled target domain. However, current high-performance models demand significant resources, resulting in prohibitive deployment costs and highlighting the need for small yet effective models. For UDA of lightweight models, Knowledge Distillation (KD) in a Teacher-Student framework can be a common approach, but we find that domain shift in UDA leads to a significant increase in non-salient parameters in the teacher model, degrading model's generalization ability and transferring misleading information to the student model. Interestingly, we observed that this phenomenon occurs considerably less in the student model. Driven by this insight, we introduce Collaborative Learning, a method that updates the teacher's non-salient parameters using the student model and at the same time enhance the student's performance using the updated teacher model. Experiments across various tasks and datasets show consistent performance improvements for both student and teacher models. For example, in semantic segmentation, CLDA achieves an improvement of +0.7% mIoU for teacher and +1.4% mIoU for student compared to the baseline model in the GTA to Cityscapes. In the Synthia to Cityscapes, it achieves an improvement of +0.8% mIoU for teacher and +2.0% mIoU for student.