As automation and mobile robotics reshape work environments, rising expectations for productivity increase cognitive demands on human operators, leading to potential stress and cognitive overload. Accurately assessing an operator's mental state is critical for maintaining performance and well-being. We use subjective time perception, which can be altered by stress and cognitive load, as a sensitive, low-latency indicator of well-being and cognitive strain. Distortions in time perception can affect decision-making, reaction times, and overall task effectiveness, making it a valuable metric for adaptive human-swarm interaction systems. We study how human physiological signals can be used to estimate a person's subjective time perception in a human-swarm interaction scenario as example. A human operator needs to guide and control a swarm of small mobile robots. We obtain eye-tracking data that is classified for subjective time perception based on questionnaire data. Our results show that we successfully estimate a person's time perception from eye-tracking data. The approach can profit from individual-based pretraining using only 30 seconds of data. In future work, we aim for robots that respond to human operator needs by automatically classifying physiological data in a closed control loop.