We propose CLAD -- a Constrained Latent Action Diffusion model for vision-language procedure planning in instructional videos. Procedure planning is the challenging task of predicting intermediate actions given a visual observation of a start and a goal state. However, future interactive AI systems must also be able to plan procedures using multi-modal input, e.g., where visual observations are augmented with language descriptions. To tackle this vision-language procedure planning task, our method uses a Variational Autoencoder (VAE) to learn the latent representation of actions and observations as constraints and integrate them into the diffusion process. This approach exploits that the latent space of diffusion models already has semantics that can be used. We use the latent constraints to steer the diffusion model to better generate actions. We report extensive experiments on the popular CrossTask, Coin, and NIV datasets and show that our method outperforms state-of-the-art methods by a large margin. By evaluating ablated versions of our method, we further show that the proposed integration of the action and observation representations learnt in the VAE latent space is key to these performance improvements.