In Chaos, a minor divergence between two initial conditions exhibits exponential amplification over time, leading to far-away outcomes, known as the butterfly effect. Thus, the distant future is full of uncertainty and hard to forecast. We introduce Group Reservoir Transformer to predict long-term events more accurately and robustly by overcoming two challenges in Chaos: (1) the extensive historical sequences and (2) the sensitivity to initial conditions. A reservoir is attached to a Transformer to efficiently handle arbitrarily long historical lengths, with an extension of a group of reservoirs to reduce the uncertainty due to the initialization variations. Our architecture consistently outperforms state-of-the-art DNN models in multivariate time series, including NLinear, Pyformer, Informer, Autoformer, and the baseline Transformer, with an error reduction of up to -89.43\% in various fields such as ETTh, ETTm, and air quality, demonstrating that an ensemble of butterfly learning, the prediction can be improved to a more adequate and certain one, despite of the traveling time to the unknown future.