Unsupervised multimodal change detection is pivotal for time-sensitive tasks and comprehensive multi-temporal Earth monitoring. In this study, we explore unsupervised multimodal change detection between two key remote sensing data sources: optical high-resolution imagery and OpenStreetMap (OSM) data. Specifically, we propose to utilize the vision foundation model Segmentation Anything Model (SAM), for addressing our task. Leveraging SAM's exceptional zero-shot transfer capability, high-quality segmentation maps of optical images can be obtained. Thus, we can directly compare these two heterogeneous data forms in the so-called segmentation domain. We then introduce two strategies for guiding SAM's segmentation process: the 'no-prompt' and 'box/mask prompt' methods. The two strategies are designed to detect land-cover changes in general scenarios and to identify new land-cover objects within existing backgrounds, respectively. Experimental results on three datasets indicate that the proposed approach can achieve more competitive results compared to representative unsupervised multimodal change detection methods.