In this paper, we consider the uplink channel estimation phase and downlink data transmission phase of cell-free millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems with low-capacity fronthaul links and low-resolution analog-to-digital converters/digital-to-analog converters (ADC/DACs). In cell-free massive MIMO, a control unit dictates the baseband processing at a geographical scale, while the base stations communicate with the control unit through fronthaul links. Unlike most of previous works in cell-free massive MIMO with finite-capacity fronthaul links, we consider the general case where the fronthaul capacity and ADC/DAC resolution are not necessarily the same. In particular, the fronthaul compression and ADC/DAC quantization occur independently where each one is modeled based on the information theoretic argument and additive quantization noise model (AQNM). Then, we address the codebook design problem that aims to minimize the channel estimation error for the independent and identically distributed (i.i.d.) and colored compression noise cases. Also, we propose an alternating optimization (AO) method to tackle the max-min fairness problem. In essence, the AO method alternates between two subproblems that correspond to the power allocation and codebook design problems. The AO method proposed for the zero-forcing (ZF) precoder is guaranteed to converge, whereas the one for the maximum ratio transmission (MRT) precoder has no such guarantee. Finally, the performance of the proposed schemes is evaluated by the simulation results in terms of both energy and spectral efficiency. The numerical results show that the proposed scheme for the ZF precoder yields spectral and energy efficiency 28% and 15% higher than that of the best baseline.