https://github.com/jiexuanyan/CPRFL.
Real-world data consistently exhibits a long-tailed distribution, often spanning multiple categories. This complexity underscores the challenge of content comprehension, particularly in scenarios requiring Long-Tailed Multi-Label image Classification (LTMLC). In such contexts, imbalanced data distribution and multi-object recognition pose significant hurdles. To address this issue, we propose a novel and effective approach for LTMLC, termed Category-Prompt Refined Feature Learning (CPRFL), utilizing semantic correlations between different categories and decoupling category-specific visual representations for each category. Specifically, CPRFL initializes category-prompts from the pretrained CLIP's embeddings and decouples category-specific visual representations through interaction with visual features, thereby facilitating the establishment of semantic correlations between the head and tail classes. To mitigate the visual-semantic domain bias, we design a progressive Dual-Path Back-Propagation mechanism to refine the prompts by progressively incorporating context-related visual information into prompts. Simultaneously, the refinement process facilitates the progressive purification of the category-specific visual representations under the guidance of the refined prompts. Furthermore, taking into account the negative-positive sample imbalance, we adopt the Asymmetric Loss as our optimization objective to suppress negative samples across all classes and potentially enhance the head-to-tail recognition performance. We validate the effectiveness of our method on two LTMLC benchmarks and extensive experiments demonstrate the superiority of our work over baselines. The code is available at