Large-scale wireless testbeds have been extensively used by researchers in the past years. Among others, high-fidelity FPGA-based emulation platforms have unique capabilities in faithfully mimicking the conditions of real-world wireless environments in real-time, at scale, and with full repeatability. However, the reliability of the solutions developed in emulated platforms is heavily dependent on the emulation precision. CaST brings to the wireless network emulator landscape what it has been missing so far: an open, virtualized and software-based channel generator and sounder toolchain with unmatched precision in creating and characterizing quasi-real-world wireless network scenarios. CaST consists of (i) a framework to create mobile wireless scenarios from ray-tracing models for FPGA-based emulation platforms, and (ii) a containerized Software Defined Radio-based channel sounder to precisely characterize the emulated channels. We design, deploy and validate multi-path mobile scenarios on the world's largest wireless network emulator, Colosseum, and further demonstrate that CaST achieves up to 20 ns accuracy in sounding the Channel Impulse Response tap delays, and 0.5 dB accuracy in measuring the tap gains.