Capsule Networks have great potential to tackle problems in structural biology because of their attention to hierarchical relationships. This paper describes the implementation and application of a Capsule Network architecture to the classification of RAS protein family structures on GPU-based computational resources. The proposed Capsule Network trained on 2D and 3D structural encodings can successfully classify HRAS and KRAS structures. The Capsule Network can also classify a protein-based dataset derived from a PSI-BLAST search on sequences of KRAS and HRAS mutations. Our results show an accuracy improvement compared to traditional convolutional networks, while improving interpretability through visualization of activation vectors.