Antenna selection is capable of handling the cost and complexity issues in massive multiple-input multiple-output (MIMO) channels. The sum-rate capacity of a multiuser massive MIMO uplink channel is characterized under the Nakagami fading. A mathematically tractable sum-rate capacity upper bound is derived for the considered system. Moreover, for a sufficiently large base station (BS) antenna number, a deterministic equivalent (DE) of the sum-rate bound is derived. Based on this DE, the sum-rate capacity is shown to grow double logarithmically with the number of BS antennas. The validity of the analytical result is confirmed by numerical experiments.