Audio recordings may provide important evidence in criminal investigations. One such case is the forensic association of the recorded audio to the recording location. For example, a voice message may be the only investigative cue to narrow down the candidate sites for a crime. Up to now, several works provide tools for closed-set recording environment classification under relatively clean recording conditions. However, in forensic investigations, the candidate locations are case-specific. Thus, closed-set tools are not applicable without retraining on a sufficient amount of training samples for each case and respective candidate set. In addition, a forensic tool has to deal with audio material from uncontrolled sources with variable properties and quality. In this work, we therefore attempt a major step towards practical forensic application scenarios. We propose a representation learning framework called EnvId, short for environment identification. EnvId avoids case-specific retraining. Instead, it is the first tool for robust few-shot classification of unseen environment locations. We demonstrate that EnvId can handle forensically challenging material. It provides good quality predictions even under unseen signal degradations, environment characteristics or recording position mismatches. Our code and datasets will be made publicly available upon acceptance.