Research into the automatic acquisition of lexical information from corpora is starting to produce large-scale computational lexicons containing data on the relative frequencies of subcategorisation alternatives for individual verbal predicates. However, the empirical question of whether this type of frequency information can in practice improve the accuracy of a statistical parser has not yet been answered. In this paper we describe an experiment with a wide-coverage statistical grammar and parser for English and subcategorisation frequencies acquired from ten million words of text which shows that this information can significantly improve parse accuracy.