With the recent proliferation of artificial intelligence systems, there has been a surge in the demand for explainability of these systems. Explanations help to reduce system opacity, support transparency, and increase stakeholder trust. In this position paper, we discuss synergies between requirements engineering (RE) and Explainable AI (XAI). We highlight challenges in the field of XAI, and propose a framework and research directions on how RE practices can help to mitigate these challenges.