Machine unlearning has become an important field of research due to an increasing focus on addressing the evolving data privacy rules and regulations into the machine learning (ML) applications. It facilitates the request for removal of certain set or class of data from the already trained ML model without retraining from scratch. Recently, several efforts have been made to perform unlearning in an effective and efficient manner. We propose a novel machine unlearning method by exploring the utility of competent and incompetent teachers in a student-teacher framework to induce forgetfulness. The knowledge from the competent and incompetent teachers is selectively transferred to the student to obtain a model that doesn't contain any information about the forget data. We experimentally show that this method is well generalized, fast, and effective. Furthermore, we introduce a zero retrain forgetting (ZRF) metric to evaluate the unlearning method. Unlike the existing unlearning metrics, the ZRF score does not depend on the availability of the expensive retrained model. This makes it useful for analysis of the unlearned model after deployment as well. The experiments are conducted for random subset forgetting and class forgetting on various deep networks and across different application domains. A use case of forgetting information about the patients' medical records is also presented.