This paper presents a method that combines a set of unsupervised algorithms in order to accurately build large taxonomies from any machine-readable dictionary (MRD). Our aim is to profit from conventional MRDs, with no explicit semantic coding. We propose a system that 1) performs fully automatic exraction of taxonomic links from MRD entries and 2) ranks the extracted relations in a way that selective manual refinement is allowed. Tested accuracy can reach around 100% depending on the degree of coverage selected, showing that taxonomy building is not limited to structured dictionaries such as LDOCE.