Efficient methods to provide sub-optimal solutions to non-convex optimization problems with knowledge of the solution's sub-optimality would facilitate the widespread application of nonlinear optimal control algorithms. To that end, leveraging recent work in risk-aware verification, we provide two algorithms to (1) probabilistically bound the optimality gaps of solutions reported by novel percentile optimization techniques, and (2) probabilistically bound the maximum optimality gap reported by percentile approaches for repetitive applications, e.g. Model Predictive Control (MPC). Notably, our results work for a large class of optimization problems. We showcase the efficacy and repeatability of our results on a few, benchmark non-convex optimization problems and the utility of our results for controls in a Nonlinear MPC setting.