There are many facts affecting human face recognition, such as pose, occlusion, illumination, age, etc. First and foremost are large pose and occlusion problems, which can even result in more than 10% performance degradation. Pose-invariant feature representation and face frontalization with generative adversarial networks (GAN) have been widely used to solve the pose problem. However, the synthesis and recognition of occlusive but profile faces is still an uninvestigated problem. To address this issue, in this paper, we aim to contribute an effective solution on how to recognize occlusive but profile faces, even with facial keypoint region (e.g. eyes, nose, etc.) corrupted. Specifically, we propose a boosting Generative Adversarial Network (BoostGAN) for de-occlusion, frontalization, and recognition of faces. Upon the assumption that facial occlusion is partial and incomplete, multiple patch occluded images are fed as inputs for knowledge boosting, such as identity and texture information. A new aggregation structure composed of a deep GAN for coarse face synthesis and a shallow boosting net for fine face generation is further designed. Exhaustive experiments demonstrate that the proposed approach not only presents clear perceptual photo-realistic results but also shows state-of-the-art recognition performance for occlusive but profile faces.