We introduce BCAT, a PDE foundation model designed for autoregressive prediction of solutions to two dimensional fluid dynamics problems. Our approach uses a block causal transformer architecture to model next frame predictions, leveraging previous frames as contextual priors rather than relying solely on sub-frames or pixel-based inputs commonly used in image generation methods. This block causal framework more effectively captures the spatial dependencies inherent in nonlinear spatiotemporal dynamics and physical phenomena. In an ablation study, next frame prediction demonstrated a 2.9x accuracy improvement over next token prediction. BCAT is trained on a diverse range of fluid dynamics datasets, including incompressible and compressible Navier-Stokes equations across various geometries and parameter regimes, as well as the shallow-water equations. The model's performance was evaluated on 6 distinct downstream prediction tasks and tested on about 8K trajectories to measure robustness on a variety of fluid dynamics simulations. BCAT achieved an average relative error of 1.92% across all evaluation tasks, outperforming prior approaches on standard benchmarks.