We present the Bayesian Neural Radiance Field (NeRF), which explicitly quantifies uncertainty in geometric volume structures without the need for additional networks, making it adept for challenging observations and uncontrolled images. NeRF diverges from traditional geometric methods by offering an enriched scene representation, rendering color and density in 3D space from various viewpoints. However, NeRF encounters limitations in relaxing uncertainties by using geometric structure information, leading to inaccuracies in interpretation under insufficient real-world observations. Recent research efforts aimed at addressing this issue have primarily relied on empirical methods or auxiliary networks. To fundamentally address this issue, we propose a series of formulational extensions to NeRF. By introducing generalized approximations and defining density-related uncertainty, our method seamlessly extends to manage uncertainty not only for RGB but also for depth, without the need for additional networks or empirical assumptions. In experiments we show that our method significantly enhances performance on RGB and depth images in the comprehensive dataset, demonstrating the reliability of the Bayesian NeRF approach to quantifying uncertainty based on the geometric structure.