Deep learning has shown promising performance on various machine learning tasks. Nevertheless, the uninterpretability of deep learning models severely restricts the usage domains that require feature explanations, such as text correction. Therefore, a novel interpretable deep learning model (named AxBERT) is proposed for Chinese spelling correction by aligning with an associative knowledge network (AKN). Wherein AKN is constructed based on the co-occurrence relations among Chinese characters, which denotes the interpretable statistic logic contrasted with uninterpretable BERT logic. And a translator matrix between BERT and AKN is introduced for the alignment and regulation of the attention component in BERT. In addition, a weight regulator is designed to adjust the attention distributions in BERT to appropriately model the sentence semantics. Experimental results on SIGHAN datasets demonstrate that AxBERT can achieve extraordinary performance, especially upon model precision compared to baselines. Our interpretable analysis, together with qualitative reasoning, can effectively illustrate the interpretability of AxBERT.