Lablets are autonomous microscopic particles with programmable CMOS electronics that can control electrokinetic phenomena and electrochemical reactions in solution via actuator and sensor microelectrodes. In this paper, we describe the design and fabrication of optimized singulated lablets (CMOS3) with dimensions 140x140x50 micrometers carrying an integrated coplanar encapsulated supercapacitor as a rechargeable power supply. The lablets are designed to allow docking to one another or to a smart surface for interchange of energy, electronic information, and chemicals. The paper focusses on the digital and analog design of the lablets to allow significant programmable functionality in a microscopic footprint, including the control of autonomous actuation and sensing up to the level of being able to support a complete lablet self-reproduction life cycle, although experimentally this remains to be proven. The potential of lablets in autonomous sensing and control and for evolutionary experimentation are discussed.