In this paper we examine the problem of determining demonstration sufficiency for AI agents that learn from demonstrations: how can an AI agent self-assess whether it has received enough demonstrations from an expert to ensure a desired level of performance? To address this problem we propose a novel self-assessment approach based on Bayesian inverse reinforcement learning and value-at-risk to enable agents that learn from demonstrations to compute high-confidence bounds on their performance and use these bounds to determine when they have a sufficient number of demonstrations. We propose and evaluate two definitions of sufficiency: (1) normalized expected value difference, which measures regret with respect to the expert's unobserved reward function, and (2) improvement over a baseline policy. We demonstrate how to formulate high-confidence bounds on both of these metrics. We evaluate our approach in simulation and demonstrate the feasibility of developing an AI system that can accurately evaluate whether it has received sufficient training data to guarantee, with high confidence, that it can match an expert's performance or surpass the performance of a baseline policy within some desired safety threshold.