Exploration in dynamic and uncertain real-world environments is an open problem in robotics and constitutes a foundational capability of autonomous systems operating in most of the real world. While 3D exploration planning has been extensively studied, the environments are assumed static or only reactive collision avoidance is carried out. We propose a novel approach to not only avoid dynamic obstacles but also include them in the plan itself, to exploit the dynamic environment in the agent's favor. The proposed planner, Dynamic Autonomous Exploration Planner (DAEP), extends AEP to explicitly plan with respect to dynamic obstacles. To thoroughly evaluate exploration planners in such settings we propose a new enhanced benchmark suite with several dynamic environments, including large-scale outdoor environments. DAEP outperform state-of-the-art planners in dynamic and large-scale environments. DAEP is shown to be more effective at both exploration and collision avoidance.