Machine learning (ML) for text classification has been widely used in various domains, such as toxicity detection, chatbot consulting, and review analysis. These applications can significantly impact ethics, economics, and human behavior, raising serious concerns about trusting ML decisions. Several studies indicate that traditional metrics, such as model confidence and accuracy, are insufficient to build human trust in ML models. These models often learn spurious correlations during training and predict based on them during inference. In the real world, where such correlations are absent, their performance can deteriorate significantly. To avoid this, a common practice is to test whether predictions are reasonable. Along with this, a challenge known as the trustworthiness oracle problem has been introduced. Due to the lack of automated trustworthiness oracles, the assessment requires manual validation of the decision process disclosed by explanation methods, which is time-consuming and not scalable. We propose TOKI, the first automated trustworthiness oracle generation method for text classifiers, which automatically checks whether the prediction-contributing words are related to the predicted class using explanation methods and word embeddings. To demonstrate its practical usefulness, we introduce a novel adversarial attack method targeting trustworthiness issues identified by TOKI. We compare TOKI with a naive baseline based solely on model confidence using human-created ground truths of 6,000 predictions. We also compare TOKI-guided adversarial attack method with A2T, a SOTA adversarial attack method. Results show that relying on prediction uncertainty cannot distinguish between trustworthy and untrustworthy predictions, TOKI achieves 142% higher accuracy than the naive baseline, and TOKI-guided adversarial attack method is more effective with fewer perturbations than A2T.