Text detection/localization, as an important task in computer vision, has witnessed substantialadvancements in methodology and performance with convolutional neural networks. However, the vastmajority of popular methods use rectangles or quadrangles to describe text regions. These representationshave inherent drawbacks, especially relating to dense adjacent text and loose regional text boundaries,which usually cause difficulty detecting arbitrarily shaped text. In this paper, we propose a novel text regionrepresentation method, with a robust pipeline, which can precisely detect dense adjacent text instances witharbitrary shapes. We consider a text instance to be composed of an adaptive central text region mask anda corresponding expanding ratio between the central text region and the full text region. More specifically,our pipeline generates adaptive central text regions and corresponding expanding ratios with a proposedtraining strategy, followed by a new proposed post-processing algorithm which expands central text regionsto the complete text instance with the corresponding expanding ratios. We demonstrated that our new textregion representation is effective, and that the pipeline can precisely detect closely adjacent text instances ofarbitrary shapes. Experimental results on common datasets demonstrate superior performance o