In recent years, smart healthcare IoT devices have become ubiquitous, but they work in isolated networks due to their policy. Having these devices connected in a network enables us to perform medical distributed data analysis. However, the presence of diverse IoT devices in terms of technology, structure, and network policy, makes it a challenging issue while applying traditional centralized learning algorithms on decentralized data collected from the IoT devices. In this study, we present an extensive review of the state-of-the-art machine learning applications particularly in healthcare, challenging issues in IoT, and corresponding promising solutions. Finally, we highlight some open-ended issues of IoT in healthcare that leaves further research studies and investigation for scientists.