With the surge in IoT devices ranging from wearables to smart homes, prompt transmission is crucial. The Age of Information (AoI) emerges as a critical metric in this context, representing the freshness of the information transmitted across the network. This paper studies hybrid IoT networks that employ Optical Communication (OC) as a reinforcement medium to Radio Frequency (RF). We formulate a quadratic convex optimization that adopts a Pareto optimization strategy to dynamically schedule the communication between devices and select their corresponding communication technology, aiming to balance the maximization of network throughput with the minimization of energy usage and the frequency of switching between technologies. To mitigate the impact of dominant sub-objectives and their scale disparity, the designed approach employs a regularization method that approximates adequate Pareto coefficients. Simulation results show that the OC supplementary integration alongside RF enhances the network's overall performances and significantly reduces the Mean AoI and Peak AoI, allowing the collection of the freshest possible data using the best available communication technology.