Advanced Driver Assistance Systems (ADAS) enhance highway safety by improving environmental perception and reducing human errors. However, misconceptions, trust issues, and knowledge gaps hinder widespread adoption. This study examines driver perceptions, knowledge sources, and usage patterns of ADAS in passenger vehicles. A nationwide survey collected data from a diverse sample of U.S. drivers. Machine learning models predicted ADAS adoption, with SHAP (SHapley Additive Explanations) identifying key influencing factors. Findings indicate that higher trust levels correlate with increased ADAS usage, while concerns about reliability remain a barrier. Specific features, such as Forward Collision Warning and Driver Monitoring Systems, significantly influence adoption likelihood. Demographic factors (age, gender) and driving habits (experience, frequency) also shape ADAS acceptance. Findings emphasize the influence of socioeconomic, demographic, and behavioral factors on ADAS adoption, offering guidance for automakers, policymakers, and safety advocates to improve awareness, trust, and usability.