This paper considers the problem for estimating the quality of machine translation outputs which are independent of human intervention and are generally addressed using machine learning techniques.There are various measures through which a machine learns translations quality. Automatic Evaluation metrics produce good co-relation at corpus level but cannot produce the same results at the same segment or sentence level. In this paper 16 features are extracted from the input sentences and their translations and a quality score is obtained based on Bayesian inference produced from training data.