The problem of estimating event truths from conflicting agent opinions is investigated. An autoencoder learns the complex relationships between event truths, agent reliabilities and agent observations. A Bayesian network model is proposed to guide the learning of the autoencoder by modeling the dependence of agent reliabilities corresponding to different data samples. At the same time, it also models the social relationships between agents in the network. The proposed approach is unsupervised and is applicable when ground truth labels of events are unavailable. A variational inference method is used to jointly estimate the hidden variables in the Bayesian network and the parameters in the autoencoder. Simulations and experiments on real data suggest that the proposed method performs better than several other inference methods, including majority voting, the Bayesian Classifier Combination (BCC) method, the Community BCC method, and the recently proposed VISIT method.