Deep learning based transient stability assessment (TSA) has achieved great success, yet the lack of interpretability hinders its industrial application. Although a great number of studies have tried to explore the interpretability of network solutions, many problems still remain unsolved: (1) the difference between the widely accepted power system knowledge and the generated interpretive rules is large, (2) the probability characteristics of the neural network have not been fully considered during generating the interpretive rules, (3) the cost of the trade-off between accuracy and interpretability is too heavy to take. To address these issues, an interpretable power system Transient Stability Assessment method with Expert guiding Neural-Regression-Tree (TSA-ENRT) is proposed. TSA-ENRT utilizes an expert guiding nonlinear regression tree to approximate the neural network prediction and the neural network can be explained by the interpretive rules generated by the tree model. The nonlinearity of the expert guiding nonlinear regression tree is endowed with the extracted knowledge from a simple two-machine three-bus power system, which forms an expert knowledge base and thus the generated interpretive rules are more consistent with human cognition. Besides, the expert guiding tree model can build a bridge between the interpretive rules and the probability prediction of neural network in a regression way. By regularizing the neural network with the average decision length of ENRT, the association of the neural network and tree model is constructed in the model training level which provides a better trade-off between accuracy and interpretability. Extensive experiments indicate the interpretive rules generated by the proposed TSA-ENRT are highly consistent with the neural network prediction and more agreed with human expert cognition.