With the increasing popularity of graph-based methods for dimensionality reduction and representation learning, node embedding functions have become important objects of study in the literature. In this paper, we take an axiomatic approach to understanding node embedding methods, first stating three properties for embedding dissimilarity networks, then proving that all three cannot be satisfied simultaneously by any node embedding method. Similar to existing results on the impossibility of clustering under certain axiomatic assumptions, this points to fundamental difficulties inherent to node embedding tasks. Once these difficulties are identified, we then relax these axioms to allow for certain node embedding methods to be admissible in our framework.