https://github.com/xxm1215/MMM2025_few-shot/
Detecting fake news in large datasets is challenging due to its diversity and complexity, with traditional approaches often focusing on textual features while underutilizing semantic and emotional elements. Current methods also rely heavily on large annotated datasets, limiting their effectiveness in more nuanced analysis. To address these challenges, this paper introduces Emotion-\textbf{A}ware \textbf{M}ultimodal Fusion \textbf{P}rompt \textbf{L}\textbf{E}arning (\textbf{AMPLE}) framework to address the above issue by combining text sentiment analysis with multimodal data and hybrid prompt templates. This framework extracts emotional elements from texts by leveraging sentiment analysis tools. It then employs Multi-Head Cross-Attention (MCA) mechanisms and similarity-aware fusion methods to integrate multimodal data. The proposed AMPLE framework demonstrates strong performance on two public datasets in both few-shot and data-rich settings, with results indicating the potential of emotional aspects in fake news detection. Furthermore, the study explores the impact of integrating large language models with this method for text sentiment extraction, revealing substantial room for further improvement. The code can be found at :\url{