In developing countries like India agriculture plays an extremely important role in the lives of the population. In India, around 80\% of the population depend on agriculture or its by-products as the primary means for employment. Given large population dependency on agriculture, it becomes extremely important for the government to estimate market factors in advance and prepare for any deviation from those estimates. Commodity arrivals to market is an extremely important factor which is captured at district level throughout the country. Historical data and short-term prediction of important variables such as arrivals, prices, crop quality etc. for commodities are used by the government to take proactive steps and decide various policy measures. In this paper, we present a framework to work with short timeseries in conjunction with remote sensing data to predict future commodity arrivals. We deal with extremely high dimensional data which exceed the observation sizes by multiple orders of magnitude. We use cascaded layers of dimensionality reduction techniques combined with regularized regression models for prediction. We present results to predict arrivals to major markets and state wide prices for `Tur' (red gram) crop in Karnataka, India. Our model consistently beats popular ML techniques on many instances. Our model is scalable, time efficient and can be generalized to many other crops and regions. We draw multiple insights from the regression parameters, some of which are important aspects to consider when predicting more complex quantities such as prices in the future. We also combine the insights to generate important recommendations for different government organizations.