In frequency division duplexing (FDD) mode, it is necessary to send the channel state information (CSI) from user equipment to base station. The downlink CSI is essential for the massive multiple-input multiple-output (MIMO) system to acquire the potential gain. Recently, deep learning is widely adopted to massive MIMO CSI feedback task and proved to be effective compared with traditional compressed sensing methods. In this paper, a novel network named ACRNet is designed to boost the feedback performance with network aggregation and parametric RuLU activation. Moreover, valid approach to expand the network architecture in exchange of better performance is first discussed in CSI feedback task. Experiments show that ACRNet outperforms loads of previous state-of-the-art feedback networks without any extra information.