Enhancing the robustness of deep learning models against adversarial attacks is crucial, especially in critical domains like healthcare where significant financial interests heighten the risk of such attacks. Whole slide images (WSIs) are high-resolution, digitized versions of tissue samples mounted on glass slides, scanned using sophisticated imaging equipment. The digital analysis of WSIs presents unique challenges due to their gigapixel size and multi-resolution storage format. In this work, we aim at improving the robustness of cancer Gleason grading classification systems against adversarial attacks, addressing challenges at both the image and graph levels. As regards the proposed algorithm, we develop a novel and innovative graph-based model which utilizes GNN to extract features from the graph representation of WSIs. A denoising module, along with a pooling layer is incorporated to manage the impact of adversarial attacks on the WSIs. The process concludes with a transformer module that classifies various grades of prostate cancer based on the processed data. To assess the effectiveness of the proposed method, we conducted a comparative analysis using two scenarios. Initially, we trained and tested the model without the denoiser using WSIs that had not been exposed to any attack. We then introduced a range of attacks at either the image or graph level and processed them through the proposed network. The performance of the model was evaluated in terms of accuracy and kappa scores. The results from this comparison showed a significant improvement in cancer diagnosis accuracy, highlighting the robustness and efficiency of the proposed method in handling adversarial challenges in the context of medical imaging.