In this article, we present our approach to personalizing Etsy Ads through encoding and learning from short-term (one-hour) sequences of user actions and diverse representations. To this end we introduce a three-component adSformer diversifiable personalization module (ADPM) and illustrate how we use this module to derive a short-term dynamic user representation and personalize the Click-Through Rate (CTR) and Post-Click Conversion Rate (PCCVR) models used in sponsored search (ad) ranking. The first component of the ADPM is a custom transformer encoder that learns the inherent structure from the sequence of actions. ADPM's second component enriches the signal through visual, multimodal and textual pretrained representations. Lastly, the third ADPM component includes a "learned" on the fly average pooled representation. The ADPM-personalized CTR and PCCVR models, henceforth referred to as adSformer CTR and adSformer PCCVR, outperform the CTR and PCCVR production baselines by $+6.65\%$ and $+12.70\%$, respectively, in offline Precision-Recall Area Under the Curve (PR AUC). At the time of this writing, following the online gains in A/B tests, such as $+5.34\%$ in return on ad spend, a seller success metric, we are ramping up the adSformers to $100\%$ traffic in Etsy Ads.