As deep neural networks are increasingly deployed in sensitive application domains, such as healthcare and security, it's necessary to understand what kind of sensitive information can be inferred from these models. Existing model-targeted attacks all assume the attacker has known the application domain or training data distribution, which plays an essential role in successful attacks. Can removing the domain information from model APIs protect models from these attacks? This paper studies this critical problem. Unfortunately, even with minimal knowledge, i.e., accessing the model as an unnamed function without leaking the meaning of input and output, the proposed adaptive domain inference attack (ADI) can still successfully estimate relevant subsets of training data. We show that the extracted relevant data can significantly improve, for instance, the performance of model-inversion attacks. Specifically, the ADI method utilizes a concept hierarchy built on top of a large collection of available public and private datasets and a novel algorithm to adaptively tune the likelihood of leaf concepts showing up in the unseen training data. The ADI attack not only extracts partial training data at the concept level, but also converges fast and requires much fewer target-model accesses than another domain inference attack, GDI.