https://opencausalab.github.io/ADAM.
In open-world environments like Minecraft, existing agents face challenges in continuously learning structured knowledge, particularly causality. These challenges stem from the opacity inherent in black-box models and an excessive reliance on prior knowledge during training, which impair their interpretability and generalization capability. To this end, we introduce ADAM, An emboDied causal Agent in Minecraft, that can autonomously navigate the open world, perceive multimodal contexts, learn causal world knowledge, and tackle complex tasks through lifelong learning. ADAM is empowered by four key components: 1) an interaction module, enabling the agent to execute actions while documenting the interaction processes; 2) a causal model module, tasked with constructing an ever-growing causal graph from scratch, which enhances interpretability and diminishes reliance on prior knowledge; 3) a controller module, comprising a planner, an actor, and a memory pool, which uses the learned causal graph to accomplish tasks; 4) a perception module, powered by multimodal large language models, which enables ADAM to perceive like a human player. Extensive experiments show that ADAM constructs an almost perfect causal graph from scratch, enabling efficient task decomposition and execution with strong interpretability. Notably, in our modified Minecraft games where no prior knowledge is available, ADAM maintains its performance and shows remarkable robustness and generalization capability. ADAM pioneers a novel paradigm that integrates causal methods and embodied agents in a synergistic manner. Our project page is at