This paper proposes an actor-critic algorithm for controlling the temperature of a battery pack using a cooling fluid. This is modeled by a coupled 1D partial differential equation (PDE) with a controlled advection term that determines the speed of the cooling fluid. The Hamilton-Jacobi-Bellman (HJB) equation is a PDE that evaluates the optimality of the value function and determines an optimal controller. We propose an algorithm that treats the value network as a Physics-Informed Neural Network (PINN) to solve for the continuous-time HJB equation rather than a discrete-time Bellman optimality equation, and we derive an optimal controller for the environment that we exploit to achieve optimal control. Our experiments show that a hybrid-policy method that updates the value network using the HJB equation and updates the policy network identically to PPO achieves the best results in the control of this PDE system.