In this paper, a novel Unified Multi-Task Learning Framework of Real-Time Drone Supervision for Crowd Counting (MFCC) is proposed, which utilizes an image fusion network architecture to fuse images from the visible and thermal infrared image, and a crowd counting network architecture to estimate the density map. The purpose of our framework is to fuse two modalities, including visible and thermal infrared images captured by drones in real-time, that exploit the complementary information to accurately count the dense population and then automatically guide the flight of the drone to supervise the dense crowd. To this end, we propose the unified multi-task learning framework for crowd counting for the first time and re-design the unified training loss functions to align the image fusion network and crowd counting network. We also design the Assisted Learning Module (ALM) to fuse the density map feature to the image fusion encoder process for learning the counting features. To improve the accuracy, we propose the Extensive Context Extraction Module (ECEM) that is based on a dense connection architecture to encode multi-receptive-fields contextual information and apply the Multi-domain Attention Block (MAB) for concerning the head region in the drone view. Finally, we apply the prediction map to automatically guide the drones to supervise the dense crowd. The experimental results on the DroneRGBT dataset show that, compared with the existing methods, ours has comparable results on objective evaluations and an easier training process.