In this paper, inspired by the successes of visionlanguage pre-trained models and the benefits from training with adversarial attacks, we present a novel transformerbased cross-modal fusion modeling by incorporating the both notions for VQA challenge 2021. Specifically, the proposed model is on top of the architecture of VinVL model [19], and the adversarial training strategy [4] is applied to make the model robust and generalized. Moreover, two implementation tricks are also used in our system to obtain better results. The experiments demonstrate that the novel framework can achieve 76.72% on VQAv2 test-std set.