Aspect-based Sentiment Analysis (ABSA) is a type of fine-grained sentiment analysis (SA) that identifies aspects and the associated opinions from a given text. In the digital era, ABSA gained increasing popularity and applications in mining opinionated text data to obtain insights and support decisions. ABSA research employs linguistic, statistical, and machine-learning approaches and utilises resources such as labelled datasets, aspect and sentiment lexicons and ontology. By its nature, ABSA is domain-dependent and can be sensitive to the impact of misalignment between the resource and application domains. However, to our knowledge, this topic has not been explored by the existing ABSA literature reviews. In this paper, we present a Systematic Literature Review (SLR) of ABSA studies with a focus on the research application domain, dataset domain, and the research methods to examine their relationships and identify trends over time. Our results suggest a number of potential systemic issues in the ABSA research literature, including the predominance of the ``product/service review'' dataset domain among the majority of studies that did not have a specific research application domain, coupled with the prevalence of dataset-reliant methods such as supervised machine learning. This review makes a number of unique contributions to the ABSA research field: 1) To our knowledge, it is the first SLR that links the research domain, dataset domain, and research method through a systematic perspective; 2) it is one of the largest scoped SLR on ABSA, with 519 eligible studies filtered from 4191 search results without time constraint; and 3) our review methodology adopted an innovative automatic filtering process based on PDF-mining, which enhanced screening quality and reliability. Suggestions and our review limitations are also discussed.