Current formations commonly rely on invariant hierarchical structures, such as predetermined leaders or enumerated formation shapes. These structures could be unidirectional and sluggish, constraining their adaptability and agility when encountering cluttered environments. To surmount these constraints, this work proposes an omnidirectional affine formation approach with hierarchical reorganizations. We first delineate the critical conditions requisite for facilitating hierarchical reorganizations within formations, which informs the development of the omnidirectional affine criterion. Central to our approach is the fluid leadership and authority redistribution, for which we develop a minimum time-driven leadership evaluation algorithm and a power transition control algorithm. These algorithms facilitate autonomous leader selection and ensure smooth power transitions, enabling the swarm to adapt hierarchically in alignment with the external environment. Furthermore, we deploy a power-centric topology switching mechanism tailored for the dynamic reorganization of in-team connections. Finally, simulations and experiments demonstrate the performance of the proposed method. The formation successfully performs several hierarchical reorganizations, with the longest reorganization taking only 0.047s. This swift adaptability allows five aerial robots to carry out complex tasks, including executing swerving movements and navigating through hoops at velocities up to 1.9m/s.